


Generating muonic force carriers events 
with classical and quantum neural 

networks

2

Michele Grossi, Enrique Kajomovitz, Oriel Kiss, 
Tigran Ramazyan and Sofia Vallecorsa



Motivation and Overview:

3

• Use generative models to sample efficiently from the underlying 
distribution of a data set.

• Enables us to sample directly as input of the conditions (not like 
Mad-graph where it has to be fixed from the start).

• The use case is the generation of muonic force carriers (MFCs) 
events, trained on Mad-Graph simulations.

• We consider classical Conditional GANs and quantum Born 
machines for this task.
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Muonic Force Carriers

• MFCs appear in different theoretical hypothesis, as a constituent 
of dark matter and could explain the anomalous magnetic 
dipole moment of the muon or the anomaly in the measurement of 
the proton radius.

• 2 use cases: a) muon fixed-target collision (FASER).
b) muon interactions in  the ATLAS1 calorimeter. 

• We are interested to generates following features for the outgoing 
muon and MFC: energy (E), transversal momentum (pt) and 
pseudorapidity (𝜂). 

[1] Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)



Conditional Generative Adversarial Network (C-GAN)
The topology has been optimized for this task.
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C-GAN: where is the condition? 
The data set  is binned in function of the incoming muon’s energy 
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reconstruct the 
initial energy

ℒ𝒢 = Binary Cross Entropy.  | ℒ𝒟= BCE + 𝜆 [MSE(𝑒, 𝑒̂) + MSE(𝜎 𝑒 , 𝜎(ê))]



C-GAN: full results
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• Preprocessing: energy scaling, 
power transform on pt, standard 
scaling.

• Hyper parameters tuning.

𝑇𝑉 =
1
2𝐼'
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𝑃! 𝑥 − 𝑄!(𝑥)

TV = 0.032

I = #features



C-GAN: Interpolation
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125 GeV (not in the training set)
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Variational Methods: basic concept and tools

The Variational Quantum Algorithms Blend Quantum and Classical computation in order to keep the circuit shallow making

use of an optimization based/learning based approach. 

Figure 1. Schematic diagram of a Variational Quantum Algorithm (VQA) [2]

[2] Variational quantum algorithms, https://arxiv.org/pdf/2012.09265.pdf



Quantum Born machine3
• Sample from a variational wavefunction | ⟩𝜓(𝜃) with probability given by the Born rule: 𝑝! 𝑥 =

|⟨𝑥|𝜓(𝜃 ⟩) |"

• Only able to generate discrete PDFs (continuous in the limit #qubits  → ∞)
• Maximum Mean Discrepancy: MMD(P,Q) =  𝔼#~%

&~%
𝐾 𝑋, 𝑌 + 𝔼#~'

&~'
𝐾 𝑋, 𝑌 − 2𝔼#~%

&~'
[𝐾 𝑋, 𝑌 ] with K 

a gaussian kernel 𝐾(𝑥, 𝑦) = 𝑒((*(+)!/. with 𝜎 ∈ [0.1,1,10,100]

• Pros: low sample complexity, Cons: weak convergence properties
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[3] Coyle, B., Mills, D. et al, "The Born supremacy". In: npj Quantum Inf 6, 60 (2020)

n dimensional binary strings
map to 2n bins of the 
discretized dataset



Use multiples quantum registers
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Born machine: multiples features3

energy

pt

𝜂

Local: learns the individual PDFs, 
time evolution of an Ising type Hamiltonian,
conjectured to be difficult to simulate classicaly.G1: creates a Bell state 

(maximally entangled 
state) between the first 
qubit in each register. 

[4] Elton Yechao, Sonika Johri et al, “Generative Quantum Learning of Joint Probability Distribution Functions” In: arXiv 2109.06315

1 layer



Born and CGAN (as a regression task) retrained on the same discretized dataset.
Outgoing muon with initial energy of 125 GeV.
Preprocessing: min max scaling. 
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Results

Total variance: TV(P,Q) = 1/2𝐼 ∑#,% 𝑃# 𝑥 − 𝑄# 𝑥 . 
I = #features

𝑇𝑉&'( = 0.09 𝑇𝑉)*+( = 0.03



Conditional Born machine
Data encoding: via data-parametrized rotations
Input:  binning energy E (scaled between [−𝜋, 𝜋])
Interpolation: train only on certain energy bins and the model should learn to 
predict  in between.
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Data re-uploading makes the quantum circuit more expressive as function of the data.

green: fixed gates
blue: data encoding gates
red: trainable gates



C-Born machine: results
Outgoing muon energy
Noise: mimic exact hardware (gates errors, readout errors). Taken from IBMQ casablanca
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a) train: 150 GeV                                b) train 200 GeV                                       c) test 175 GeV

TV = 0.03, TV_noise = 0.12                  TV = 0.02,   TV_noise = 0.15               TV = 0.07,  TV_noise = 0.14



Conclusion:
• Use C-GAN and Born machine to generate MFC events.
• C-GAN is able to generate all features, interpolation is ongoing 

work
• The Born machine is currently able to learn discrete distributions 

because of the hardware limitations.
• The Born machine is able to interpolate.
• Future works would be devoted to real hardware and larger 

physical systems 
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Backup: CGAN training
Training loss with RMSProp

Data Preprocessing:
• E = E/E_ingoing
• Pt = pt0.2
• Standard scaling

Hyper-parameters tuning:
• learning rate
• number of epochs
• network’s topology
• auxiliary loss weight

Wasserstein CGAN did not work well 




