

Generating muonic force carriers events with classical and quantum neural networks

Michele Grossi, Enrique Kajomovitz, **Oriel Kiss**, Tigran Ramazyan and Sofia Vallecorsa

Motivation and Overview:

- Use generative models to sample efficiently from the underlying distribution of a data set.
- Enables us to sample directly as **input of the conditions** (not like Mad-graph where it has to be fixed from the start).
- The use case is the generation of muonic force carriers (MFCs) events, trained on Mad-Graph simulations.
- We consider classical Conditional GANs and quantum Born machines for this task.

Muonic Force Carriers

- MFCs appear in different theoretical hypothesis, as a constituent of dark matter and could explain the anomalous magnetic dipole moment of the muon or the anomaly in the measurement of the proton radius.
- 2 use cases: a) muon fixed-target collision (FASER).
 b) muon interactions in the ATLAS¹ calorimeter.
- We are interested to generates following features for the outgoing muon and MFC: energy (E), transversal momentum (pt) and pseudorapidity (η) .

[1] Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: *Phys. Rev. D 101, 011701* (2020)

Conditional Generative Adversarial Network (C-GAN)

The topology has been optimized for this task.

C-GAN: where is the condition?

The data set is binned in function of the incoming muon's energy

C-GAN: full results

- Preprocessing: energy scaling, power transform on pt, standard scaling.
- Hyper parameters tuning.

$$TV = \frac{1}{2I} \sum_{i,x} |P_i(x) - Q_i(x)|$$

$$TV = 0.032$$

I = #features

C-GAN: Interpolation

125 GeV (not in the training set)

Variational Methods: basic concept and tools

The Variational Quantum Algorithms Blend Quantum and Classical computation in order to keep the circuit shallow making use of an **optimization based/learning based** approach.

Figure 1. Schematic diagram of a Variational Quantum Algorithm (VQA) [2]

[2] Variational quantum algorithms, https://arxiv.org/pdf/2012.09265.pdf

Quantum Born machine³

• Sample from a variational wavefunction $|\psi(\theta)\rangle$ with probability given by the Born rule: $p_{\theta}(x) = |\langle x|\psi(\theta)\rangle|^2$

- Only able to generate discrete PDFs (continuous in the limit #qubits → ∞)
- Maximum Mean Discrepancy: $MMD(P,Q) = \mathbb{E}_{X \sim P}[K(X,Y)] + \mathbb{E}_{X \sim Q}[K(X,Y)] 2\mathbb{E}_{X \sim P}[K(X,Y)]$ with K = 0 a gaussian kernel $K(x,y) = e^{-(x-y)^2/\sigma}$ with $\sigma \in [0.1,1,10,100]$
- Pros: low sample complexity, Cons: weak convergence properties

[3] Coyle, B., Mills, D. et al, "The Born supremacy". In: npj Quantum Inf 6, 60 (2020)

Born machine: multiples features³

Use multiples quantum registers

G₁: creates a Bell state (maximally entangled state) between the first qubit in each register.

1 layer

Local: learns the individual PDFs, time evolution of an Ising type Hamiltonian, conjectured to be difficult to simulate classicaly.

[4] Elton Yechao, Sonika Johri et al, "Generative Quantum Learning of Joint Probability Distribution Functions" In: arXiv 2109.06315

Results

Born and CGAN (as a regression task) retrained on the same discretized dataset.

Outgoing muon with initial energy of 125 GeV.

Preprocessing: min max scaling.

Total variance: TV(P,Q) = $1/2I \sum_{i,x} |P_i(x) - Q_i(x)|$.

 $TV_{GAN} = 0.09 \quad TV_{BORN} = 0.03$

I = #features

Conditional Born machine

green: fixed gates

blue: data encoding gates

red: trainable gates

Data encoding: via data-parametrized rotations

Input: binning energy E (scaled between $[-\pi,\pi]$)

Interpolation: train only on certain energy bins and the model should learn to predict in between.

Data re-uploading makes the quantum circuit more expressive as function of the data.

C-Born machine: results

Outgoing muon energy

Noise: mimic exact hardware (gates errors, readout errors). Taken from IBMQ casablanca

a) train: 150 GeV

TV = 0.03, TV_noise = 0.12

b) train 200 GeV

TV = 0.02, TV_noise = 0.15

c) test 175 GeV

$$TV = 0.07$$
, $TV_noise = 0.14$

Conclusion:

- Use C-GAN and Born machine to generate MFC events.
- C-GAN is able to generate all features, interpolation is ongoing work
- The Born machine is currently able to learn discrete distributions because of the hardware limitations.
- The Born machine is able to interpolate.
- Future works would be devoted to real hardware and larger physical systems

Thanks for your attention!

oriel.kiss@cern.ch sofia.vallecorsa@cern.ch

Backup: CGAN training

Data Preprocessing:

- E = E/E_ingoing
- $Pt = pt^{0.2}$
- Standard scaling

Hyper-parameters tuning:

- learning rate
- number of epochs
- network's topology
- auxiliary loss weight

Training loss with RMSProp

Wasserstein CGAN did not work well

